MATERIA: BIOLOGIA
MAESTRO : JUAN JOSE GUZMAN MARTINEZ
TEMAS:
AUTOPOIESIS ( OMIOSTASIS, BARIASION GENETICA)
SELECCION NATURAL
BIODIVERSIDAD Y ADAPTACION
INTEGRANTES:
PAOLA JOVANNA MARTINEZ CASTAÑEDA
VIOLETA ESTEFANIA GALLEGOS TORRES
JOSE MANUEL CAMARGO
Autopoiesis
La autopoiesis o autopoyesis (en griego: αύτο, ποίησις [auto, poiesis], ‘a si mismo; creación, producción’)? es un neologismo, con el que se designa un sistema capaz de reproducirse y mantenerse por sí mismo. Fue propuesto por los biólogos chilenos Humberto Maturana y Francisco Varela en 1972 para definir la química de auto-mantenimiento de las células vivas. Una descripción breve sería decir que la autopoiesis es la condición de existencia de los seres vivos en la continua producción de sí mismos
La definición original se puede encontrar en De Máquinas y Seres Vivos (1973)
Una máquina autopoiética es una máquina organizada (definida como una unidad) como una red de procesos de producción (transformación y destrucción) de componentes que: (i) a través de sus interacciones y transformaciones continuamente regeneran y realizan la red de procesos (las relaciones) que los han producido, y (ii) la constituyen (la máquina) como una unidad concreta en el espacio en el que ellos (los componentes) existen especificando el dominio topológico de su realización como tal de una red. el espacio definido por un sistema autopoiético es autocontenido y no se puede describir mediante el uso de dimensiones que definen otro espacio. No obstante, cuando nos referimos a nuestras interacciones con un sistema autopoiético concreto, proyectamos este sistema en el espacio de nuestras manipulaciones y hacemos una descripción de esta proyección.
Desde entonces el concepto ha sido también aplicado en los campos de la teoría de sistemas y la sociología, como por ejemplo por el sociólogo alemán Niklas Luhmann. Es necesario analizar la autopoiesis desde el punto de vista de los siguientes autores.
Según Maturana y Varela son autopoiéticos los sistemas que presentan una red de procesos u operaciones (que los definen como tales y lo hacen distinguibles de los demás sistemas), y que pueden crear o destruir elementos del mismo sistema, como respuesta a las perturbaciones del medio. Aunque el sistema cambie estructuralmente, dicha red permanece invariante durante toda su existencia, manteniendo la identidad de este.
Los seres vivos son en particular sistemas autopoiéticos moleculares, y que están vivos sólo mientras están en autopoiesis. (biología del fenómeno social p5)
Esta propiedad de los sistemas de producirse a sí mismos es la autopoiesis y define el «acoplamiento» de un sistema a su entorno.
Para Maturana, la autopoiesis es la propiedad básica de los seres vivos, puesto que son sistemas determinados en su estructura, es decir, son sistemas tales que cuando algo externo incide sobre ellos, los efectos dependen de ellos mismos, de su estructura en ese instante, y no de lo externo. Los seres vivos son autónomos, en los que su autonomía se da en su autorreferencia y son sistemas cerrados en su dinámica de constitución como sistemas en continua producción de sí mismos.
Aunque un sistema autopoiético se mantenga en desequilibrio, es capaz de conservar una consistencia estructural absorbiendo permanentemente la energía de su medio. Al igual que la célula y los seres vivos, los sistemas autopoiéticos tienen la capacidad de conservar la unión de sus partes e interactuar con ellas. Los sistemas autopoiéticos son autónomos, lo cual los hace un sistema cerrado, que se autorregula continuamente. Otros ejemplos de autopoiesis son la conciencia, un organismo, etc. Estos se constituyen de una red de procesos que logran transformar componentes pero en los que el mismo sistema maneja su identidad con relación al entorno. La autopoiesis designa la manera en que los sistemas mantienen su identidad gracias a procesos internos en que autorreproducen sus propios componentes.
Estos sistemas están abiertos a su medio porque intercambian materia y energía pero simultáneamente se mantienen cerrados operacionalmente, pues sus operaciones son las que los distinguen del entorno. No obstante, son autónomos en sus operaciones debido a la capacidad que tiene cada sistema de reaccionar y amoldarse según los estímulos que inciden desde el medio.
La muerte de un ser vivo por ejemplo puede ser considerada como la disrupción de la autopoiesis ya que la pérdida de las constantes vitales puede resultar de mecanismos interruptores endógenos o exógenos. En cualquiera de los dos casos, el sistema autopoiético no puede compensar más los efectos disfuncionales de esos mecanismos; lo apropiado es que sí los pueda compensar.
Este enfoque de Maturana es sistémico, pues explica los sistemas vivos por la convergencia y no por las propiedades en sus componentes.Nuestro enfoque será mecanicista: no se aducirán fuerzas ni principios que no se encuentren en el universo físico. No obstante, nuestro problema es la organización de lo vivo y, por ende, lo que nos interesa no son las propiedades de sus componentes, sino los procesos y relaciones entre procesos realizados por medio de componentes.

Homeostasis
La homeostasis (del griego homos (ὅμος), ‘similar’,1 y stasis (στάσις), ‘estado’, ‘estabilidad’)2 es una propiedad de los organismos vivos que consiste en su capacidad de mantener una condición interna estable compensando los cambios en su entorno mediante el intercambio regulado de materia y energía con el exterior (metabolismo). Se trata de una forma de equilibrio dinámico que se hace posible gracias a una red de sistemas de control realimentados que constituyen los mecanismos de autorregulación de los seres vivos. Ejemplos de homeostasis son la regulación de la temperatura y el balance entre acidez y alcalinidad (pH).
El concepto fue aplicado por Walter Cannon en 1926,3 en 19294 y en 1932,5 6 para referirse al concepto de medio interno (milieu intérieur), publicado en 1865 por Claude Bernard, considerado a menudo el padre de la fisiología.
Tradicionalmente se ha aplicado en biología pero, dado el hecho de que no solo lo biológico es capaz de cumplir con esta definición, otras ciencias y técnicas han adoptado también este término.7
Interacción entre ser vivo y ambiente: respuestas a los cambios
Las estrategias que acompañan a estas respuestas pueden resumirse como sigue:
- Evitación: los organismos evitadores minimizan las variaciones internas utilizando algún mecanismo de escape comportamental que les permite evitar los cambios ambientales, ya sea espacial (buscando microhábitats no estresantes como cuevas, escondrijos; o a mayor escala, las migraciones) o temporal (hibernación, sopor, diapausa, huevos y pupas resistentes).
- Conformidad: en los organismos conformistas el medio interno del animal cambia paralelamente a las condiciones externas, es decir, se conforma al ambiente pues no regula o la regulación no es efectiva; designado por el prefijo "poiquilo" (Ej. poiquilotermo). Puede existir una compensación funcional con la aclimatación o la aclimatización, recuperándose la velocidad funcional anterior al cambio.
- Regulación: en los organismos reguladores un disturbio ambiental dispara acciones compensatorias que mantienen el ambiente interno relativamente constante; a menudo designados con el prefijo "homeo" (Ej. homeotermo).
Estas categorías no son absolutas ya que no existen perfectos reguladores ni perfectos conformistas; los modelos más reales se encuentran entre conformistas y reguladores, dependiendo del factor ambiental y de la especie animal.
Homeostasis y sistemas de control
Los siguientes componentes forman parte de un bucle de retroalimentación (en inglés feedback loop) e interactúan para mantener la homeostasis (Fig. 1):
- Variable: es la característica del ambiente interno que es controlada.
- Sensor (Receptor): detecta cambios en la variable y envía la información al integrador (centro de control).
- Integrador (Centro de Control): recibe información del sensor sobre el valor de la variable, interpreta el error que se ha producido y actúa para anularlo integrando datos del sensor y datos almacenados del punto de ajuste.
- Punto de ajuste: es el valor normal de la variable que ha sido previamente almacenado en la memoria.
- Efector: es el mecanismo que tiene un efecto sobre la variable y produce la respuesta. La respuesta que se produce está monitorizada de forma continua por el sensor que vuelve a enviar la información al integrador (retroalimentación).
- Retroalimentación negativa (Fig. 2): tiene lugar cuando la retroalimentación invierte la dirección del cambio
- Retroalimentación positiva: tiene lugar cuando la retroalimentación tiene igual dirección que la desviación del punto de ajuste amplificando la magnitud del cambio. Luego de un lapso de tiempo se invierte la dirección del cambio retornando el sistema a la condición inicial. En sistemas fisiológicos la retroalimentación positiva es menos común que la negativa, sin embargo, es muy importante en numerosos procesos. Como ejemplos, se puede citar la coagulación de la sangre, la generación de señales nerviosas (concentración de sodio hasta gener

Variabilidad genética
La variabilidad genética se refiere a la variación en el material genético de una población o especie, e incluye los genomas. Para que la selección natural pueda actuar sobre un carácter, debe haber algo que seleccionar, es decir, varios alelos para el gen que codifica ese carácter. Además, cuanta más variación haya, más evolución hay. Ronald Fisher demostró matemáticamente que cuantos más alelos existan para un gen, más probabilidad hay de que uno de ellos se imponga al resto (se fije). Esto implica que cuanta más variabilidad genética exista en una población, mayor será el ritmo de la evolución. Esto se conoce como "Teorema fundamental de la selección natural de que establece y varía en cambios y transformaciones."El ritmo de aumento en adaptación de un organismo en cualquier momento es igual a su variación genética en adaptación en ese momento.El ritmo de aumento de aptitud media de cualquier organismo en cualquier momento atribuible a la selección natural actuando a través de cambios en las frecuencias génicas, es exactamente igual a su variabilidad genética en aptitud en ese momento.
Variaciones y reservorios génicos
Las poblaciones permiten estudiar la variación genética. Una población es un grupo de individuos de la misma especie que se reproduce por endogamia. Como los miembros de una población se cruzan entre sí, comparte un grupo de genes llamado reservorio génico; éste está compuesto por todos los genes presentes en una población incluyendo sus diferentes alelos. La frecuencia relativa de un alelo es la cantidad de veces que el alelo se manifiesta en un reservorio génico comparado con la cantidad de veces que se manifiestan otros alelos del mismo gen. La frecuencia relativa suele expresarse como porcentaje. Los reservorios génicos son importantes para la teoría de la evolución, ya que la evolución provoca cambios en una población a través del tiempo. En términos genéticos, la evolución es cualquier cambio en la frecuencia relativa de los alelos de una población. Por ejemplo, si la frecuencia relativa del alelo N en una población de ratones cambiara con el tiempo al 30 por ciento, diríamos que la población está evolucionando.1
Fuentes de variación genética
Las dos fuentes principales de variación genética son las mutaciones y la combinación de genes que resultan de la reproducción sexual.
- Mutaciones: Una mutación es cualquier cambio en una secuencia de ADN. Las mutaciones pueden deberse a errores en la replicación del ADN, a radiaciones o sustancias químicas del medio ambiente. Las mutaciones no siempre afectan el fenotipo de un organismo, es decir, sus características físicas, de conducta y bioquímicas. Por ejemplo, un codón de ADN alterado de GGA a GGU codificará el mismo aminoácido, glicina. Esa mutación no tiene efecto en el fenotipo. Sin embargo en muchas mutaciones, sí afectan en el fenotipo. Algunas, incluso afectan la eficacia biológica de un organismo o la capacidad para sobrevivir y reproducirse en su medio ambiente. Otras mutaciones pueden no afectar la eficacia biológica.1
- Combinación de genes: Las mutaciones no son la única fuente de variación hereditaria. La mayoría de las diferencias hereditarias se debe a la combinación de genes que ocurre durante la reproducción de gametos. Hay que recordar que cada cromosoma de un par homólogo se mueve independiente durante la meiosis. Por ello, los 23 pares de cromosomas que tienen los humanos pueden reproducir 8,4 millones de combinaciones de genes, todas diferentes. También durante la meiosis ocurre otro proceso, el cruzamiento. El cruzamiento aumenta aún más la cantidad de genotipos distintos que pueden aparecer en la descendencia. Cuando los alelos se recombinan durante la reproducción sexual, pueden reproducir fenotipos muy diferentes. Por ello, la reproducción sexual es una fuente importante de variación en muchas poblaciones.1
Causas de la variación
Las razones por las cuales se da variación en la descendencia son:
- Mezcla al azar de genes de los progenitores: En los seres diploides los cromosomas homólogos (contienen genes para los mismos caracteres) se heredan uno de un progenitor y otro del otro, produciendo combinaciones aleatorias de caracteres.
- Combinaciones de cromosomas: Los gametos también son diferentes entre sí, ya que cada uno recibe un ejemplar al azar de cada tipo de cromosoma.
- Recombinación de genes: Se produce durante la profase I de la meiosis, y en ella se da un entrecruzamiento entre una de las dos cromátidas de los cromosomas homólogos, por lo que las cromátidas resultantes son diferentes entre sí y de las originales.

Selección natural
La selección natural es un fenómeno de la evolución que se define como la reproducción diferencial de los genotipos de una población biológica. La formulación clásica de la selección natural establece que las condiciones de un medio ambiente favorecen o dificultan, es decir, seleccionan la reproducción de los organismos vivos según sean sus peculiaridades. La selección natural fue propuesta por Darwin como medio para explicar la evolución biológica. Esta explicación parte de tres premisas; la primera de ellas el rasgo sujeto a selección debe ser heredable. La segunda sostiene que debe existir variabilidad del rasgo entre los individuos de una población. La tercera premisa aduce que la variabilidad del rasgo debe dar lugar a diferencias en la supervivencia o éxito reproductor, haciendo que algunas características de nueva aparición se puedan extender en la población. La acumulación de estos cambios a lo largo de las generaciones produciría todos los fenómenos evolutivos.
En su forma no inicial, la teoría de la evolución por selección natural constituye el gran aporte1 de Charles Darwin (e, independientemente, por Alfred Russel Wallace), fue posteriormente reformulada en la actual teoría de la evolución, la síntesis moderna. En biología evolutiva se la suele considerar la principal causa del origen de las especies y de su adaptación al medio.
La selección natural puede ser expresada como la siguiente ley general, tomada de la conclusión de El origen de las especies:Existen organismos que se reproducen y la progenie hereda características de sus progenitores, existen variaciones de características si el medio ambiente no admite a todos los miembros de una población en crecimiento. Entonces aquellos miembros de la población con características menos adaptadas (según lo determine su medio ambiente) morirán con mayor probabilidad. Entonces aquellos miembros con características mejor adaptadas sobrevivirán más probablemente.El resultado de la repetición de este esquema a lo largo del tiempo es la evolución de las especies.
En la teoría moderna
En la teoría sintética la selección natural no es la única causa de evolución, aunque sí la que tiene un papel más destacado. El concepto de selección natural se define ahora de un modo más preciso: como la reproducción diferencial de los genotipos en una población. Desde el momento en que existen diferencias en éxito reproductivo de las distintas variantes genéticas, existe selección natural. Por ejemplo: si los individuos más verdosos en una población de insectos-hoja aportan unos tres descendientes a la siguiente generación, y los individuos marrones aportan como media 1,5 descendientes, está habiendo selección a favor de los verdes. Las diferencias en éxito reproductivo pueden ocurrir por diversas causas (diferente fertilidad, riesgo de muerte por depredadores, atractivo sexual, capacidad para explotar los recursos alimenticios, etc.).
Figuras importantes del síntesis, y los tres fundadores de la genética de las poblaciones, fueron Ronald Fisher, quién escribió The Genetical Theory of Natural Selection en 1930, J.B.S. Haldane, quién introdujo el concepto del «costo» de la selección natural,2 , y Sewall Wright, quién elucidó sobre la selección y la adaptación,3
Generalmente, existe una correlación entre la eficacia reproductiva de los portadores de un genotipo y la adaptación al medio que éste les otorga. Por tanto, los rasgos que confieren ventajas adaptativas comúnmente son seleccionados a favor y propagados en las poblaciones (en algunos casos, un genotipo podría otorgar éxito reproductivo sin aportar mayor adaptación al medio, y sería seleccionado igualmente). La teoría de la selección natural aportó por primera vez una explicación científica satisfactoria para múltiples enigmas científicos del mundo biológico, especialmente el de la "apariencia de diseño" que existe en los seres vivos. Permitió, por tanto, que la Biología pudiera prescindir de los elementos divinos y sobrenaturales y se convirtiera así en una auténtica ciencia.
Hoy en día, la evolución por selección natural se estudia en diversos tipos de organismos, mediante experimentos de laboratorio y de campo, y se desarrollan métodos para averiguar qué genes han estado recientemente sometidos a la acción de la selección natural y con qué intensidad.
La fecundidad, tanto de machos como de hembras, puede verse limitada por la "selección de fecundidad". Así, la viabilidad de los gametos producidos variara. Los conflictos intragenómicos derivan en selección genética. Finalmente, la unión de algunas combinaciones de óvulos y esperma será estadísticamente más compatible que otras. A esto se le llama selección por compatibilidad.
Existen 4 Tipos a veces considerados 3 de selección natural, clasificados según los individuos que sobreviven en cada tipo de selección, es decir, según cuántos sobrevivan:
- Selección estabilizadora
- Selección direccional
- Selección disruptiva o Selección balanceada
- Selección sexual


Biodiversidad
La biodiversidad o diversidad biológica es, según el Convenio Internacional sobre la Diversidad Biológica, el término por el que se hace referencia a la amplia variedad de seres vivos sobre la Tierra y los patrones naturales que la conforman, resultado de miles de millones de años de evolución según procesos naturales y también de la influencia creciente de las actividades del ser humano. La biodiversidad comprende igualmente la variedad de ecosistemas y las diferencias genéticas dentro de cada especie que permiten la combinación de múltiples formas de vida, y cuyas mutuas interacciones con el resto del entorno fundamentan el sustento de la vida sobre el planeta.
El término «biodiversidad» es un calco del inglés «biodiversity». Este término, a su vez, es la contracción de la expresión «biological diversity» que se utilizó por primera vez en octubre de 1986 como título de una conferenciasobre el tema, el National Forum on BioDiversity, convocada por Walter G. Rosen, a quien se le atribuye la idea de la palabra.1
La Cumbre de la Tierra celebrada por Naciones Unidas en Río de Janeiro en 1992 reconoció la necesidad mundial de conciliar la preservación futura de la biodiversidad con el progreso humano según criterios desostenibilidad o sustentabilidad promulgados en el Convenio internacional sobre la Diversidad Biológica que fue aprobado en Nairobi el 22 de mayo de 1992, fecha posteriormente declarada por la Asamblea General de la ONU como Día Internacional de la Biodiversidad. Con esta misma intención, el año 2010 fue declarado Año Internacional de la Diversidad Biológica por la 61.ª sesión de la Asamblea General de las Naciones Unidas en 2006, coincidiendo con la fecha del Objetivo Biodiversidad 2010.2
Origen y evolución del término[editar]
Según la RAE, el término biodiversidad define la “Variedad de especies animales y vegetales en su medio ambiente”3
Sin embargo el concepto, por su carácter intuitivo, ha presentado ciertas dificultades para su definición precisa, tal como señaló Fermín Martín Piera4 al argumentar que el abuso en su empleo podría «vaciarlo de contenido», ya que en sus palabras: «suele acontecer en la historia del pensamiento que los nuevos paradigmas conviven durante un tiempo con las viejas ideas», considerando junto a otros autores que el concepto de biodiversidad fue ya apuntado por la propia teoría de la evolución.
A principios del siglo XX, los ecólogos Jaccard y Gleason propusieron en distintas publicaciones los primeros índices estadísticos destinados a comparar la diversidad interna de los ecosistemas. A mediados del siglo XX, el interés científico creciente permitió el desarrollo del concepto para describir la complejidad y organización, hasta que en 1980, Thomas Lovejoy propuso la expresión diversidad biológica.5

